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Abstract. Based on Sakharov’s idea of a ‘metrical elasticity’ of space, i.e., of the
emergence of a generalized force, preventing distortion of space, we detect the pressure
of the vacuum as per the geometry of the space around the local gravity system. The
gravitational defect of mass is interpreted as the transfer of energy to the vacuum, which
becomes apparent from its deformation. We determine the gravitational impact of mat-
ter on the vacuum and opposite in the sign pressure of it in case of weakly gravitating
static centrally symmetric distribution of matter using appropriate solution of Einstein’s
equations. A possibility to extend the obtained results to arbitrary gravitational systems
is evaluated. A non-conservation of energy in gravitational systems is interpreted by
the Extended Space Model (ESM) as the rotation of the energy-momentum vector in 5-
dimensional space. A proposed approach to determining pressure as a source of gravity
leads to a revision of the dependence of the deceleration parameter of the Universe on
the density parameters. Under this condition we examine the ratio between the density
parameters of dark energy and cosmological constant depending on the deceleration
parameter.
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1. INTRODUCTION

The non-zero vacuum pressure is an element of cosmological models [1–3],
resulting from the solution of Einstein’s equations. He postulated that curvature of
space-time is responsible for gravity. Sakharov [4] has argued that gravity emerges
from quantum field theory in roughly the same sense that hydrodynamics or contin-
uum elasticity theory emerges from molecular physics. He proposed that curvature
of space “leads to a ‘metrical elasticity’ of space, i.e., to generalized forces which
oppose the curving of space.” The action term of Einstein’s geometrodynamics is
identified with the change in the action of quantum fluctuations of the vacuum
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[5–7]. From general relativity follows that the gravitational mass of bodies placed
in confined volume is less than the sum of the gravitational masses of these bodies,
dispersed over infinite distance. The matter, located more compactly, distorts the
space in the local domain in a greater degree, however, creating smaller gravitational
mass in comparison with the same amount of matter, distributed over a greater vol-
ume [1, 2]. This phenomenon is explained by transfer of energy into the gravitational
field, which results in the deformation of space. Accumulation of energy during de-
formation demonstrates its elasticity. We will take these properties of gravity into
consideration, while determining the vacuum pressure.

The Extended Space Model (ESM) [8] is a generalization of special theory of
relativity in a 5-dimensional space G(1,4) having an additional coordinate s, which
is a extension of the concept of action in an embedded 4D space [9, 10]. In ESM,
in addition to the rotations in plane (TX) relating to the Lorentz transformations,
the rotations in planes (TS) and (XS) are considered [11]. Rotations of the energy-
momentum vector in extended space correspond to the motion of a particle in gravity
field in the embedded four-dimensional space-time [12]. Movement along additional
5-th coordinate corresponds to the presence of particles rest-mass in (1+3)D. In this
paper we describe the gravitational effect of static mass by means of (TS)-rotation of
energy-momentum 5-vector of matter density.

The negative pressure of the dark energy determines the dynamics of Universe
extension. In standard ⇤CDM cosmology the pressure of non-relativistic matter,
including baryons and dark matter, does not affect the accelerated expansion of the
universe, characterized by the deceleration parameter q = � äa

ȧ2 , where a is a scale
factor and the overdot signifies differentiation with respect to time t. We use the units
of measurement, in which a light velocity constant c and a gravitational constant G
are c= 8⇡G= 1. The Friedmann acceleration equation can be written as

ä

a
=�1

6

X

i

⇢i(1+wi), (1)

where the sum i extends over the different components, matter, radiation, and dark
energy, ⇢i are their equivalent mass densities, pi are pressures, and wi = pi/⇢i is the
equation of state for each component. The value of wi is 0 for non-relativistic matter,
1/3 for radiation and �1 for a cosmological constant ⇤, which we denote w0

⇤. Under
these conditions for density parameters ⌦i the acceleration equation gives

q =
1

2

X
⌦i(1+3wi) = ⌦r+

1

2
⌦m+

1+3wDE

2
⌦DE , (2)

where ⌦r,⌦m,⌦DE relate to radiation, matter, and dark energy. At present ⌦r is neg-
ligible, and if wDE corresponds to the cosmological constant [13, 14] this equation
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simplifies to

q0 =
1

2
⌦m�⌦⇤. (3)

Alternatively, it was considered a model of the Universe with the equation of state
pv =�(1/3)⇢, in which the expansion rate is constant [15, 16].

The aim of this work is to study the contribution to accelerated expansion made
by the vacuum pressure excited by the distributed components. We find appropriate
deceleration parameter and discuss its compliance with the data of Type Ia super-
novae (SNe Ia) and Plank 2018.

2. SPHERICAL SOURCE

2.1. SOLUTION OF EINSTEIN EQUATIONS

We analyze a centrally symmetrical static gravitational field. In spherical coor-
dinates xi = (t,r,✓,') it is described by the metric

ds
2 = ⌫(r)dt2�!(r)dr2� r

2(d✓2+sin2 ✓d'2), (4)

where ⌫,! are functions of radial coordinate. The centrally symmetric stress-energy
tensor T i

i corresponds to the source of gravitation, which creates this type of field.
Solution of Einstein’s equations for a spherical body with a radius of a yields [1] the
required functions

⌫ =
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, r  a, (6)

where T 1
1 is the density of energy and variable y has the dimension of length. For the

static source of gravitation it is equivalent to the density of matter: T 1
1 = ⇢.

In the external area the obtained functions ⌫,w correspond to the Schwarzschild
metric, and therefore the value

M = 4⇡

Z a

0
⇢r

2
dr (7)

is the gravitational mass of a spherical body of radius a. Integration is performed here
in case of the element of volume dVc = 4⇡r2dr, which corresponds to the coordinate
frame, whereas in its proper frame the given element of space volume will be dVp =
4⇡r2!1/2

dr. Inequality ! > 1 means that the gravitational mass of body is less than
the sum of individual gravitational masses of its constituent elements. This interprets
as the transfer of energy, as a source of gravitational field, to the vacuum [17].
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2.2. PRESSURE IN CASE OF LOW GRAVITATION

The volume of spherical body in proper frame is obtained by integration of
elements dVp with (6) and amounts to

V
p
int(a) =

Z a

0
4⇡r2!1/2

dr =

Z a

0
4⇡r2

✓
1� 1

3
⇢r

2

◆�1/2

dr. (8)

For small space curvature inside the sphere, i.e. with ⇢a
2
<< 1, the representation of

the expression under the integral into a formal power series turns out to be

V
p
int(a) =

4⇡

3
a
3+

2⇡

15
⇢a

5
. (9)

Since the density of matter is constant, the mass of body in this frame or the proper
mass will be M

p = ⇢V
p
int(a). A proper energy of static source of gravitation is de-

fined as Ep =M
p.

The gravitational impact on the vacuum is determined as the relation of dif-
ference between proper energies of two spherical bodies with identical gravitational
mass to the change of proper volume of space. With constant densities ⇢1,⇢2 and
radii a1,a2, (a1 < a2) this mass is

M =
4

3
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3
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4
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3
2. (10)

The difference of proper masses of two bodies is written as follows:
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p
1 �M

p
2 =

2⇡

15
a
6
1⇢

2
1

✓
1

a1
� 1

a2

◆
. (11)

Due to equality of gravitational masses of both bodies, the space distortion in the
area r > a2, created by them, will be identical. Let’s find the difference between the
volumes in the proper frame, which are set in the coordinate frame by the condition
r  a2. This volume for the first body is the sum of this body’s own volume and the
peripheral area a1 < r  a2, namely,

V
p
1 = V

p
int(a1)+V

p
ext(a1,a2), (12)

where the second term is given by

V
p
ext(a1,a2) =

Z a2
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4⇡r2!1/2
dr. (13)

Breaking the expression under integral into the formal power series, in case of
M/r << 1 we obtain
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As a result, the volume (12) will amount to

V
p
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The area r  a2 restricts the second body, whose proper volume for the weak gravi-
tational field according to (9) is

V
p
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The difference between the proper volumes, confined within the radius a2 in the
coordinate frame, will be

�V
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p
2 =

1

5
⇡⇢1a

3
1(a

2
2�a

2
1). (17)

The ratio of change in the energy of the spherical body �E
p = �M

p to the
change of its volume for small �a = a2�a1 retaining its gravitational mass taking
(11) into consideration yields

}=
�E

p

�V p
=

1

3
⇢. (18)

With increasing masses defect, the difference between the proper volume of the
spheres and their identical volumes in a remote frame

�V = (V p
1 �Vc)� (V p

2 �Vc) =�V
p (19)

increases. In the theory of elasticity } corresponds to the pressure of an perfect
liquid. Positive pressure of gravity field characterizes the gravitational impact of
matter on the vacuum, which lies in its constraint. The field pressure upon vacuum
is compensated by pressure of the vacuum itself:

pv =�}. (20)

This is the mean vacuum pressure in case of weak gravitation inside the static sphere.
The relationship between density and pressure in expression (18) coincides with the
state equation of photon gas [18].

3. ENERGY TRANSFORMATION IN GSM

In the extended space G(1,4) a 4-vector of energy and momentum is completed
to a 5-vector

p =

✓
E

c
, px , py , pz , mc

◆
, (21)
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where m is the rest mass of the particle. For simplicity we have recorded this vector
in (1 + 2)-dimensional space:

pm=

✓
E

c
, P , ps

◆
. (22)

Its hyperbolic rotations on an angle �TS in the plane (TS) [8] yields

E
0

c
=
E

c
cosh�TS +pssinh�TS , (23)

P
0=P , (24)

p
0
s=pscosh�TS +

E

c
sinh�TS . (25)

In terms of ESM in the static case the energy-momentum vector of the unit
volume of matter with total density of matter "p="!

1/2(r) can be represented as the
5-vector

pmt=
⇣
c"!

1/2 (r) , 0 , c"!
1/2 (r)

⌘
.

Its hyperbolic rotation in the plane (TS) (23)-(25) on an angle �TS=� 1
2 ln(! (r))

yields
pmg=(c" , 0 , c") .

This rotation corresponds to transition from the total density of matter to the density
as a source of gravity.

4. ISOTROPIC SOURCE

Let us examine an arbitrary space-time, containing a source of gravitation with
density ⇢, which is described by the metric ds

2 = gijdx
i
dx

j . We allocate a small
area, in which metrical coefficients and density can be considered as constant in
the first approximation, pressure is isotropic, and whose boundary is a sphere in the
proper frame. The gravity, created by this ball, is described by metric (4).

The metrical coefficients of the space-time without a source of gravitation in
this sphere will be slightly different from gij . The transition to a locally inertial
system [1] with the beginning in the point xk0 is made for the changed metrics using
the transformation

x
0k = x

k+
1

2

⇣
�k
ij

⌘

xi=xi
0

x
i
x
j (26)

with Christoffel’s symbols �k
ij . In this locally flat space we place the absent source

of gravitation in the empty sphere. This one will comply to conditions under which
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pressure of gravitational field was obtained (18). In case of static space-time, the
proper pressure of vacuum is determined according to (20) and will be

pv =�1

3
⇢. (27)

5. COSMOLOGICAL SOLUTION

A model is considered in which the source of gravity is the vacuum pressure
excited in it by the gravitational field of matter and radiation. In FLRW cosmological
model the source of gravitation is static in comoving coordinates, which is a locally
geodesic system. Equation of state (27) corresponds to static space-time but if expan-
sion of the universe is accelerating, then the inequality �pv > } holds. However, the
relative velocity of the universe expansion is equal to Hubble parameter H , which is
small at present period, and this equation of state is suitable. The vacuum pressure
induced by the energy density of the distributed components will be

pe =
X

(we
i )⇢i. (28)

Tolman [18] has applied solutions of Einstein’s equation for the electromag-
netic field in the case of weak gravity to analyze the gravitational interaction of a
light packet and beam with a material particle. This resulted in a double active grav-
itational mass of the directed electromagnetic radiation compared to a material parti-
cle, equivalent to its energy. This is also true for the photon gas and is consistent with
the Lagrangian mechanics analysis for the passive gravitational mass of the photon
[12, 19].

Matter and gas of relativity particles are considered to induce vacuum pressure
(27), which corresponds to the equation of state parameters we

m =w
e
r =�1/3. If the

vacuum energy associated with the cosmological constant creates additional vacuum
pressure, it is reflected in the additional term of the equation of state: we

⇤ =�1/3. Its
summation with w

0
⇤ yields w⇤ = �4/3 and the deceleration parameter (3) provided

wm =w
e
m at the present becomes q0 =�1.5⌦⇤ (i). Otherwise, an additional member

of the equation of state for the cosmological constant is we
⇤ = 0 and the deceleration

parameter will be q0 =�⌦⇤ (ii).
Initial estimate of the accelerating expansion of the universe from supernovae

observation [13] resulted in a current deceleration parameter q0 = �1± 0.4. The
Planck measurements of the CMB anisotropies, combining information from the
temperature and polarization maps and the lensing reconstruction [20] gives mat-
ter density parameter ⌦m = 0.315± 0.007. This result is consistent with analysis
of the the anisotropic galaxy clustering measurement from the Baryon Oscillation
Spectroscopic Survey [21]. Under the assumption ⌦m+⌦DE = 1 the dark energy
density is ⌦DE = 0.685±0.007 and in the case ⌦DE = ⌦⇤ this yields the decelera-
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tion parameter q0 =�1.0275±0.011 (i) and q0 =�0.685±0.007 (ii) depending on
whether the cosmological constant creates additional vacuum pressure or not. Wider
SNe Ia data sampling and advanced statistical analysis, taking into account series
expansion of luminosity distance as a function of redshift [14] yields for ⇤CDM
cosmologies q0 = �0.474+0.112

�0.109 with curvature and q0 = �0.552+0.049
�0.047 with a flat

universe. Estimates of deceleration parameter are highly dependent on the data sam-
ple, the cosmological model and the analysis method [14, 22–24]. Dependence of q0
on the parameter ⌦� = ⌦DE �⌦⇤ for models (i) and (ii) is shown in Fig. 1.

Fig. 1 – The deceleration parameter dependence of ⌦� = ⌦DE �⌦⇤ for models, in which the
cosmological constant creates additional vacuum pressure (i) and don’t induce it (ii). The parameter

⌦DE corresponds to the Planck data under condition ⌦m+⌦DE = 1.

6. CONCLUSIONS

Matter, even static, warps space, and it is natural to assume that the result is
a vacuum pressure, which does not take into account the standard ⇤CDM model.
We have examined a possible mechanism for the occurrence of this pressure, based
on the gravitational effect of the masses and the assumption of elasticity of space in
compliance with the law of energy conservation. The component of the equation of
(c) 2020 RRP 72(0) 113 - v.2.0*2020.7.20 —ATG
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state for a vacuum containing a distributed locally isotropic static gravity source is
w =�(1/3). Originally the spherical sources of gravity with constant densities and
identical gravitational masses are considered in the spheres with the same volume
in the remote frame. With the increase in mass defect, the difference between the
proper volume of the spheres and their volume in the remote frame increases, which
gives a positive } and a negative vacuum pressure. We have shown that the equation
of state, obtained for a weakly gravitating sphere, can be extended to a more general
case. In statics, according to the theory of elasticity, determined on the basis of the
vacuum model as a perfect liquid, the vacuum pressure balances the impact of gravity
on vacuum. In ESM the gravitational defect of static mass is described by hyperbolic
rotation of energy-momentum 5-vector of matter density in plane (TS).

Application of the considered mechanism of excitation of vacuum pressure by
matter to the FLRW cosmological model yields a deceleration parameter that de-
pends only on cosmological constant. If the vacuum energy associated with ⇤ cre-
ates additional vacuum pressure, the deceleration parameter at the present time is
q0 =�1.5⌦⇤, otherwise it is reduced to q0 =�⌦⇤. The second result is closer to the
present estimates under condition ⌦DE =⌦⇤, but the difference is still considerable.
Without this assumption, both options remain relevant.
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